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1.0 Introduction

The party’s candidates in North Carolina need to address voters’ concerns about crime with pragmatic,
evidence-based policy prescriptions. The factors that likely have a causal relationship with the crime rate
and that can be affected through policy are those related to the elements of the criminal justice system and
those related to economic policy. Our research question is:

Can we reduce the crime rate by putting policies in place to target income inequality or to adjust
the efficiency or severity of the criminal justice system?

This study presents a model that seeks to explain North Carolina’s crime rate based on county-level data from
1987. While the model is associative, it highlights certain variables that possibly have a causal relationship
with the crime rate.

2.0 Loading and Cleaning the Data

The initial effort focuses on getting a sense of the data’s structure and identifying and addressing anomalies.

2.1 Load Useful Packages and the Data

Load packages

suppressMessages(library(stargazer))
suppressMessages(library(tidyverse))
suppressMessages(library(car))
suppressMessages(library(lmtest))
suppressMessages(library(sandwich))
suppressMessages(library(kableExtra))
suppressMessages(library(psych))
suppressMessages(library(ggthemes))
suppressMessages(library(gridExtra))
suppressMessages(library(ggfortify))
source('nc_crime_helper_functions.R')

2



Load and review the data

Summary statistics build familiarity with the data and provide the first indications of anomalies.

crime <- read.csv('crime_v2.csv')
crime %>% summary() %>% formattedTable(5)

county year crmrte prbarr prbconv
Min. : 1 Min. :87 Min. :0.01 Min. :0.09 : 5
1st Qu.: 52 1st Qu.:87 1st Qu.:0.02 1st Qu.:0.21 0.588859022: 2
Median :105 Median :87 Median :0.03 Median :0.27 ‘ : 1
Mean :102 Mean :87 Mean :0.03 Mean :0.29 0.068376102: 1
3rd Qu.:152 3rd Qu.:87 3rd Qu.:0.04 3rd Qu.:0.34 0.140350997: 1
Max. :197 Max. :87 Max. :0.10 Max. :1.09 0.154451996: 1
NA’s :6 NA’s :6 NA’s :6 NA’s :6 (Other) :86

prbpris avgsen polpc density taxpc
Min. :0.15 Min. : 5.38 Min. :0.00 Min. :0.00 Min. : 25.7
1st Qu.:0.36 1st Qu.: 7.34 1st Qu.:0.00 1st Qu.:0.55 1st Qu.: 30.7
Median :0.42 Median : 9.10 Median :0.00 Median :0.96 Median : 34.9
Mean :0.41 Mean : 9.65 Mean :0.00 Mean :1.43 Mean : 38.1
3rd Qu.:0.46 3rd Qu.:11.42 3rd Qu.:0.00 3rd Qu.:1.57 3rd Qu.: 40.9
Max. :0.60 Max. :20.70 Max. :0.01 Max. :8.83 Max. :119.8
NA’s :6 NA’s :6 NA’s :6 NA’s :6 NA’s :6

west central urban pctmin80 wcon
Min. :0.00 Min. :0.00 Min. :0.00 Min. : 1.3 Min. :194
1st Qu.:0.00 1st Qu.:0.00 1st Qu.:0.00 1st Qu.: 9.8 1st Qu.:251
Median :0.00 Median :0.00 Median :0.00 Median :24.3 Median :281
Mean :0.25 Mean :0.37 Mean :0.09 Mean :25.5 Mean :285
3rd Qu.:0.50 3rd Qu.:1.00 3rd Qu.:0.00 3rd Qu.:38.1 3rd Qu.:315
Max. :1.00 Max. :1.00 Max. :1.00 Max. :64.3 Max. :437
NA’s :6 NA’s :6 NA’s :6 NA’s :6 NA’s :6

wtuc wtrd wfir wser wmfg
Min. :188 Min. :154 Min. :171 Min. : 133 Min. :157
1st Qu.:375 1st Qu.:191 1st Qu.:287 1st Qu.: 230 1st Qu.:289
Median :407 Median :203 Median :317 Median : 253 Median :320
Mean :412 Mean :212 Mean :322 Mean : 276 Mean :336
3rd Qu.:443 3rd Qu.:225 3rd Qu.:345 3rd Qu.: 281 3rd Qu.:360
Max. :613 Max. :355 Max. :509 Max. :2177 Max. :647
NA’s :6 NA’s :6 NA’s :6 NA’s :6 NA’s :6
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wfed wsta wloc mix pctymle
Min. :326 Min. :258 Min. :239 Min. :0.02 Min. :0.06
1st Qu.:400 1st Qu.:329 1st Qu.:297 1st Qu.:0.08 1st Qu.:0.07
Median :450 Median :358 Median :308 Median :0.10 Median :0.08
Mean :443 Mean :358 Mean :313 Mean :0.13 Mean :0.08
3rd Qu.:478 3rd Qu.:383 3rd Qu.:329 3rd Qu.:0.15 3rd Qu.:0.08
Max. :598 Max. :500 Max. :388 Max. :0.47 Max. :0.25
NA’s :6 NA’s :6 NA’s :6 NA’s :6 NA’s :6

2.1 Identify and Address Anomalies

Notably, there is not immediate evidence of top- or bottom-coding in the data. There are, however, a number
of anomalies.

Misclassified variable

The variable prbconv was incorrectly read in as a factor vector, likely because of the errant accent mark
revealed in the call to summary above. The variable should be numeric. Converting the variable first to a
character vector and then to a numeric vector will result in non-numeric observations being converted to
NA entries.

crime$prbconv <- crime$prbconv %>%
as.character() %>%
as.numeric()

## Warning in function_list[[k]](value): NAs introduced by coercion

The variable prbconv is now a numeric vector.

Missing data

Every variable has 6 NA entries. Examining the observations with NA entries reveals that all of the missing
data lie in six rows of the data. Since these observations contain no data, removing them will not harm the
analysis.

naIndex <- (crime %>%
is.na() %>%
rowSums()) > 0

crime %>%
filter(naIndex == T) %>%
kable(format = 'latex', booktabs = T) %>%
kable_styling(latex_options = c('striped', 'scale_down'))

county year crmrte prbarr prbconv prbpris avgsen polpc density taxpc west central urban pctmin80 wcon wtuc wtrd wfir wser wmfg wfed wsta wloc mix pctymle
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
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crime <- crime %>%
drop_na()

Following removal, there are 91 remaining rows contain 0 NA entries.

Duplicate observations

Duplicate observations yield no additional information and increase the likelihood that ordinary least squares
(OLS) regression will produce biased estimates. There is 1 duplicated row in the data set. This is easily
verified by examining the rows in question.

duplicated_rows <- crime %>%
duplicated()

duplicated_county <- crime[which(duplicated_rows), 'county']
crime %>%

filter(county == duplicated_county) %>%
select(1:8) %>%
kable(format = 'latex', booktabs = T) %>%
kable_styling(latex_options = c('striped'))

county year crmrte prbarr prbconv prbpris avgsen polpc
193 87 0.024 0.266 0.589 0.423 5.86 0.001
193 87 0.024 0.266 0.589 0.423 5.86 0.001

Removing the duplicated row is trivial.

crime <- crime %>%
distinct()

Following the removal, there are 90 observations and 0 duplicated rows.

Potential outlier in wser

The maximum value of wser is 2177, an order of magnitude larger than the median value of $253 and is,
therefore, worthy of further examination. Constructing box plots of the various wage categories gives a sense
of the distribution of average wages by category. Overlaying the plots with the average wages by category
for the county with the maximum value of wser, county 185 makes clear that this is a unique outlier in the
data. It is likely, although it cannot be demonstrated through the data alone, that the maximum value of
wser was the result of a data entry error.

wageLongForm <- crime %>%
select('county', wcon, wtuc, wtrd, wfir, wser, wmfg, wfed, wsta, wloc) %>%
pivot_longer(-county, names_to = 'category', values_to = 'wage')

wserMaxIndex <- crime$wser %>%
which.max()

wserCounty <- crime$county[wserMaxIndex]
countyWages <- wageLongForm %>%

filter(county == wserCounty)
wagePlot <- ggplot(wageLongForm, aes(x = category, y = wage)) +

geom_boxplot() +
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theme_economist_white(gray_bg = FALSE) +
geom_point(data = countyWages, colour = '#e3120b', size = 3) +
xlab(NULL) +
ggtitle(label = 'Boxplots of wages by category',

subtitle = paste('With average wages for county', wserCounty, 'plotted in red'))
wagePlot
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Boxplots of wages by category

3.0 The Model Building Process

3.1 Univariate Analysis of the Outcome Variable

A challenge in building interpretable models around the crime rate is that the scale of the crime rate
is likely not well understood outside of domain experts. It is more natural to think of the outcome of
policy interventions in terms of the percent change in the crime rate. A logarithmic transformation of
crmrte facilitates this. The logarithmic transformation is valid because the crime rate has a minimum value
greater than zero and an unbounded maximum. Reviewing histograms of the untransformed and transformed
variables reveals that the the positive skew in crmrte is reduced significantly with the transformation.

crime <- addLogColumns(crime, 3:ncol(crime))
crmrte_plot <- econHist('crmrte', crime)
lcrmrte_plot <- econHist('lcrmrte', crime)
grid.arrange(crmrte_plot, lcrmrte_plot, ncol = 2)
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3.2 Implementation of the income inequality variable

The research question requires a variable that serves as a proxy for income inequality. The data do not
contain information about the spread of income between the most and least affluent residents of each county.
The data do, however provide average wages by job category. A proxy, albeit imperfect, for income inequality
is the range of the average wages by category. Unfortunately, as described above, there is likely a data entry
error in the value of wser for county 185. As a result, wser is not considered when implementing the income
inequality variable.

wageColumns <- c('wcon', 'wtuc', 'wtrd', 'wfir',
'wmfg', 'wfed', 'wsta', 'wloc')

maxWage <- apply(crime[,wageColumns], 1, max) # Find the max average wage by county
minWage <- apply(crime[,wageColumns], 1, min) # Find the min average wage by county
crime$incomeIneq <- maxWage - minWage
crime$lincomeIneq <- log(crime$incomeIneq)
ineqDF <- as.data.frame(crime[,'incomeIneq'])
names(ineqDF) <- 'incomeIneq'
ineqDF %>%

summary %>%
kable(format = 'latex', booktabs = T) %>%
kable_styling(latex_options = 'striped')

incomeIneq
Min. :145
1st Qu.:217
Median :248
Mean :256
3rd Qu.:273
Max. :454

The table above suggests that the incomeIneq is skewed. The histogram of incomeIneq confirms this
suspicion. A logarithmic transformation renders the distribution of incomeIneq somewhat closer to normal.
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incomeIneq_plot <- econHist('incomeIneq', crime)
lincomeIneq_plot <- econHist('lincomeIneq', crime)
grid.arrange(incomeIneq_plot, lincomeIneq_plot, ncol = 2)
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3.3 Base Model

The first model only includes the key explanatory variables that direct address the research question. Those
variables that are considered :

1. The crime rate. The transformed variable, lcrmrte is preferred to the untransformed crmrte for
the reasons described in section 3.1.

2. Income inequality. This is proxied as described in 3.2. Income inequality can be addressed through
policy by raising the minimum wage and supporting collective bargaining by labor unions. We hypoth-
esize that increased income inequality will be associated with an increase in the crime rate.

3. Probability of arrest. The probability of arrest serves as an indicator of the aggressiveness of law
enforcement. The variable is proxied as the ratio of the number of arrests per reported crime. Values
greater than 1.0 are plausible in that arrests can be effected by a jurisdiction for crimes that occurred
outside of that jurisdiction and arrests can be made in the current calendar year for crimes reported
in previous calendar years. The probably of arrest can be affected by adjusting police resourcing,
training, and tactics. We hypothesize that an increase in the probability of arrest will be associated
with a decrease in the crime rate.

4. Probability of conviction. This is a measure of the effectiveness of investigative and prosecutorial
efforts proxied by the ratio of convictions per arrest. Values greater than 1.0 are plausible in that a
single criminal may face several charges at a trial following a single arrest and convictions may occur
in the current calendar year for arrests that occurred in the previous calendar year. The probability
of conviction can be affected by adjusting training and resources for investigators and prosecutors or
by redefining crimes through statutory changes. We hypothesize that an increase in the probability of
conviction will be associated with a decrease in the crime rate.

5. Probability of prison. The likelihood that an individual will be sentenced to prison, proxied by the
ratio of convictions resulting in a prison sentence to total convictions, gives a sense of the willingness
of society to impose punishments involving the loss of liberty. The probability of a prison sentence can
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be affected through changes to the criminal statute and sentencing guidelines. We hypothesize that
an increase in the probability of being sentenced to prison will be associated with a reduction in the
crime rate.

6. Average prison sentence. The average prison sentence is a measure of the severity of punishment.
The data provide the average prison sentence in days. We hypothesize that an increase in the average
sentence will be associated with a reduction in the crime rate.

7. Per-capita number of police. This is a measure of the resources available to law enforcement. We
hypothesize that an increase in the number of police per capita will be associated with a reduction in
the crime rate.

Univariate analysis of explanatory variables

The distributions of crmrte, incomeIneq, and their logarithmic transformations were explored in the his-
tograms in sections 3.1 and 3.2. The histograms that follow that show the distributions of prbarr, probconv,
prbpris, avgsen, polpc, and their logarithmic transformations.

The histogram of prbpris shows a strong positive skew. This is substantially corrected with the logarthimc
transformation. The maximum value of prbarr appears to be an outlier. The value, 1.091, is associated
with county 115. We will continue to collect interesting outliers to be examined at the end of the univariate
analysis.

baseAndLogPHist('prbarr', crime)
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interestingCounties <- c(crime$county[which.max(crime$prbarr)])

Likewise, the histogram of prbconv shows a positive skew that is corrected with the logarithmic transforma-
tion. The maximum and minimum values of prbconv are interesting outliers. The minimum value is 0.068
and is associted with county 11. The maximum value is 2.121 associated with county 185.

baseAndLogPHist('prbconv', crime)
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interestingCounties <- union(interestingCounties,
c(crime$county[which.min(crime$prbconv)],

crime$county[which.max(crime$prbconv)]))

The histogram of prbpris shows negative skew. As expected, the logarithmic transformation exacerbates
this skew.

baseAndLogPHist('prbpris', crime)
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The average sentence is positively skewed. The maximum value is potentially interesting as an outlier. Its
value is 20.7 associated with county 115.

baseAndLogPHist('avgsen', crime)
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interestingCounties <- union(interestingCounties,
crime$county[which.max(crime$avgsen)])

The number of police per capita has a large positive skew driven in large part by a single large excursion
from the mean. This value of 0.009 is associated with county 115.

baseAndLogPHist('polpc', crime)
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interestingCounties <- union(interestingCounties,
crime$county[which.max(crime$polpc)])

The potential outliers listed above are worthy of a quick review. A series of box plots of the standardized
variables gives a sense of the counties that produced these values. Start by standardizing the variables of
interest.
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crimeZLong <- crime %>%
mutate(

Zcrmrte = Z(crmrte),
Zprbarr = Z(prbarr),
Zprbconv = Z(prbconv),
Zprbpris = Z(prbpris),
Zavgsen = Z(avgsen),
Zpolpc = Z(polpc),
ZincomeIneq = Z(incomeIneq)) %>%

select(county, Zcrmrte, Zprbarr,
Zprbconv, Zprbpris, Zavgsen,
Zpolpc, ZincomeIneq) %>%

pivot_longer(-county,
names_to = 'category',
values_to = 'value')

crimeZLong$county <- as.factor(crimeZLong$county)

Then find the values of each variable for the counties of interest.

interestingVals <- crimeZLong %>%
filter(county %in% interestingCounties)

Now construct the box plots.

outlierPlot <- ggplot(crimeZLong,
aes(x = category, y = value)) +

geom_boxplot() +
theme_economist_white(gray_bg = FALSE) +
geom_point(data = interestingVals,

aes(colour = county),
size = 3) +

xlab(NULL) +
scale_fill_manual(name = 'County') +
ggtitle(label = 'Boxplots of standardized variables',

subtitle = 'With values associated with three counties of interest')
outlierPlot
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The box plot above reveals three counties with different approaches to law enforcement that all lead to
relatively low crime rates. County 11’s relatively large law enforcement contingent is effective at making
arrests. It’s investigators and prosecutors, however, are relatively ineffective at bringing cases to successful
outcomes. County 115’s relatively massive police force makes a relatively large number of arrests that typi-
cally result in convictions and long prison sentences. County 185’s small police force produces unremarkable
arrest statistics but brings cases forward that result in convictions. These convictions, however, result in
short sentences. While these three narratives are interesting, nothing in them seems to suggest an a priori
reason to discount the values associated with counties 11, 115, and 185.

Multivariate analysis

A scatterplot matrix reveals relationships between the outcome and the explanatory variables explored in
the univariate analysis above. Logarithmic transformations were considered for all variables that showed a
positive skew. Where a logarithmic transformation would make interpretability challenging, as in the cases
of those variables that are proxies for percentages, the transformation was not applied.

crime_1 <- crime %>% select(lcrmrte, prbarr, prbconv,
prbpris, lavgsen, lpolpc,
lincomeIneq)

pairs.panels(crime_1)
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Correlations between lcrmrte and the probabilities of arrest and conviction are negative, consistent with
the hypotheses for the effect of these variables. Interestingly, the probability of prison and the transformed
average sentence seem to have little impact on the crime rate. The scatterplots below confirm that the lack
of correlation is not an artifact of transforming avgsen.

avgsen_scatter <- econPlot('avgsen', 'lcrmrte', crime)
lavgsen_scatter <- econPlot('lavgsen', 'lcrmrte', crime)
grid.arrange(avgsen_scatter, lavgsen_scatter, ncol = 2)
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The positive correlation between lcrmrte and the transformed measure of income inequality is consistent
with the hypothesis that an increase in income inequality is associated with an increase in the crime rate.
The positively correlation between polpc and lcrmrte, however, is counterintuitive. It suggests that an
increase in the relative size of the police force is associated with an increase in the crime rate. It may be
the case that the causal flow is such that increases in the crime rate are met quickly by increasing the end
strength of the police force.

The scatterplot matrix above does not offer an adequate resolution to determine the nature of the relation-
ships between the independent variables and lcrmrte. These relationships are explored in the scatterplots
that follow.

prbarr_scatter <- econPlot('prbarr', 'lcrmrte', crime)
prbconv_scatter <- econPlot('prbconv', 'lcrmrte', crime)
grid.arrange(prbarr_scatter, prbconv_scatter, ncol = 2)
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The plots above suggest that the moderate negative correlations with lcrmrte for the variables prbarr and
prbconv may be the result of the outlier values demonstrated above to be associated with counties 115 and
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185. Care will be taken to examine the effects of outliers in the regressions that will follow.

lpolpc_scatter <- econPlot('lpolpc', 'lcrmrte', crime)
lincomeIneq_scatter <- econPlot('lincomeIneq', 'lcrmrte', crime)
grid.arrange(lpolpc_scatter, lincomeIneq_scatter, ncol = 2)
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The plots above both show some evidence of nonlinearity. In particular, the relationship between lcrmrte
and lpolpc may be quadratic. Unfortunately, further transformations of polpc are likely to render its effect
on the crime rate extremely challenging to interpret.

For completeness, the scatterplot below examines the relationship between lavgsen and prbpris. Contrary
to the hypothesis expressed in 3.3, there is no obvious relationship.

prbpris_scatter <- econPlot('prbpris', 'lcrmrte', crime)
grid.arrange(prbpris_scatter, ncol = 2)
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Initial model specification

The initial specification is:

log(crmrte) = β0+β1prbarr+β2prbconv+β3prbpris+β4log(avgsen)+β5log(polpc)+β6log(incomeIneq)+u

Fitting the model

We fit the model using OLS and examine the coefficients.

fit_1 <- lm(lcrmrte ~ prbarr + prbconv + prbpris +
lavgsen + lpolpc + lincomeIneq, data = crime)

fit_1r2 <- summary(fit_1)$r.squared
fit_1CoeffDF <- fit_1$coefficients %>% as.data.frame()
names(fit_1CoeffDF) <- 'coefficients'
fit_1CoeffDF %>% kable(format = 'latex', booktabs = T) %>%

kable_styling()

coefficients
(Intercept) 1.846
prbarr -2.360
prbconv -0.734
prbpris 0.306
lavgsen -0.063
lpolpc 0.626
lincomeIneq -0.042

The base model’s R2 is 0.61 meaning that the model’s independent variables explain 61% of the variance.

Highlights of evaluation of the OLS assumptions

It is not clear that the model meets the assumption of random sampling. While temporal autocorrelation is
clearly not a factor, spatial autocorrelation needs to be assessed. It stands to reason that the observations
for adjacent counties may be correlated. We do not have the tools to assess spatial autocorrelation and will
leave this matter for further study.

The residuals vs. fitted values plot below gives some evidence of a violation of the zero conditional mean
assumption. It appears that the excursions from zero, while small, increase toward the right side of the plot.
We will accept this for the time being but will seek to address it in subsequent models.

par(mfrow = c(1, 2))
plot(fit_1, which = c(1,2), pch = 19, cex = 0.5)
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A review of the Q-Q plot gives clear evidence that the the normality assumption has been violated. A
Shapiro-Wilks test (p = 0.008) provides further evidence that the residuals are not normally distributed.
However, the sample size is sufficient that we can rely on OLS asymptotics and proceed with the analysis.

Assessing statistical significance

While a Breusch-Pagan test (p = 0.374) suggests that we cannot reject the null hypothesis of homoscedas-
ticity, we follow the best practice of computing heteroscedasticity-robust standard errors.

fit_1Coeftest <- coeftest(fit_1, vcov = vcovHC)
fit_1Coeftest %>% coefTestTable()

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.846 2.184 0.845 0.400
prbarr -2.360 0.369 -6.398 0.000
prbconv -0.734 0.102 -7.167 0.000
prbpris 0.306 0.739 0.414 0.680
lavgsen -0.063 0.191 -0.331 0.741
lpolpc 0.626 0.148 4.220 0.000
lincomeIneq -0.042 0.240 -0.174 0.862

Interpreting the coefficients
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β1. A unit change in the probability of probability of arrest is associated with a -235.982% change in the
crime rate. A unit change in the probability of arrest is a 100% percent change, which is too large to be
useful. It is perhaps more natural to state that increasing the probability of arrest by 0.01 (1%) is associated
with a -2.36% change in the crime rate.

β2. Following the form of the analysis above, increasing the probability of conviction by 0.01 (1%) is
associated with a -0.734% change in the crime rate.

β5. A 1% increase in the number of police per capita is associated with a 0.626% increase in the crime rate.

β3, β4, and β6 are not significantly different than zero, suggesting little association between the probability
of receiving a prison sentence, changes in the average sentence length, or changes in our measure of income
inequality with changes in the crime rate.

3.2 A Second Model

Adding variables may increase the accuracy of the model. The base model does not control for the following
potentially interesting effects.

1. Demographic effects. The variable pctymle gives the percentage of young men aged 15-24 in a given
county. Members of this demographic may be more likely to commit crime than other members of the
population.

2. Effects related to urbanization. The nature of crime in urban areas is likely different form that in rural
areas. A proxy for urbanization is the variable density. This variable provides the population density
for each of the counties included in the data.

3. Regional effects. The nature of crime likely has something to do with where in the state a county
lies. Beyond issues of urbanization, transportation connections may facilitate illicit activity in certain
parts of the state. North Carolina’s major axis runs east-west. The data split the state into a western,
central, and–presumably–an eastern region. The west region is captured in the dummy variable west,
the central in central.

Univariate analysis of the added explanatory variables

As with the base model, we turn our attention to the distributions of the new explanatory variables in order
to determine which of them may benefit from transformation. The regional variables are binary in nature.

west_plot <- econHist('west',
crime,
curve = F)

central_plot <- econHist('central',
crime,
curve = F)

grid.arrange(west_plot,
central_plot,
ncol = 2)
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The distributions above do not provide any indication of counties that are anomalously coded both central
and west. Searching for such values is a sensible precaution.

dualCounties <- crime %>%
filter(west == 1 & central == 1) %>%
select(county, west, central)

dualCounties %>%
kable(format = 'latex', booktabs = T) %>%
kable_styling()

county west central
71 1 1

County 71 is coded as both west and central. This is likely a data entry error. Retaining the county has
the benefit of not losing additional information related to the observation.

Plotted below are the histograms of density and its logarithmic transformation, ldensity. The variable’s
scale is almost certainly off by two orders of magnitude. The code book states that density reflects the
number of people per square mile. The city of Raleigh, North Carolina has a population density in 2019
approaching 3,000 people per square mile. It is likely that the actual unit of density is 100 people per square
mile. The untransformed variable clearly exhibits positive skew. A natural logarithm transformation can
be applied since density is bounded on (0,∞]. Applying the transformation results in a distribution closer
to normal. However, thinking about changes in density in terms of 100 people per square mile is tractable.
The new model will use the untransformed variable.

density_plot <- econHist('density',
crime)

ldensity_plot <- econHist('ldensity',
crime)

grid.arrange(density_plot,
ldensity_plot,
ncol = 2)
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The histogram of pctymle also shows a positive skew. However, to maintain interpretability the variable is
left untransformed.

pctymle_plot <- econHist('pctymle',
crime)

grid.arrange(pctymle_plot,
ncol = 2)
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Multivariate analysis

A scatterplot matrix gives a sense of the relationships between the new variables and those in the base model.

crime_2 <- crime %>% select('lcrmrte', 'prbarr', 'prbconv', 'prbpris',
'lavgsen', 'incomeIneq', 'west', 'central',
'density', 'pctymle')

pairs.panels(crime_2)
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Several of the new explanatory variables are correlations with lmcmrte. In particular, the relationships be-
tween lmcrmrte and the independent variables density and pctymle appear linear or nearly so. Examining
these relationships with the scatterplot below suggests that the relationship between pctymle and lcrmrte
is likely less strong than that between density and lcrmrte.

density_scatter <- econPlot('density', 'lcrmrte', crime)
pctymle_scatter <- econPlot('pctymle', 'lcrmrte', crime)
grid.arrange(density_scatter, pctymle_scatter, ncol = 2)
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Fitting the model
The new population model follows.

log(crmrte) = β0 + β1prbarr+ ...+ β6log(incomeIneq) + β7pctymle+ β8density+ β9west+ β10central+ u

We fit the model using OLS and obtain the following coefficients and associated robust standard errors.

fit_2 <- lm(formula = lcrmrte ~ prbarr + prbconv +
prbpris + lavgsen + lpolpc +
lincomeIneq + pctymle + density +
west + central, data = crime)

fit_2r2 <- summary(fit_2)$r.squared
fit_2Coeftest <- coeftest(fit_2, vcov = vcovHC)
fit_2Coeftest %>% coefTestTable()

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.095 1.756 -0.054 0.957
prbarr -1.634 0.303 -5.389 0.000
prbconv -0.577 0.095 -6.067 0.000
prbpris 0.168 0.455 0.370 0.712
lavgsen -0.123 0.130 -0.948 0.346
lpolpc 0.462 0.121 3.817 0.000
lincomeIneq 0.090 0.185 0.486 0.628
pctymle 0.879 1.487 0.591 0.556
density 0.119 0.025 4.710 0.000
west -0.486 0.085 -5.749 0.000
central -0.209 0.064 -3.281 0.002

The new model’s R2 is 0.799 which is substantially higher than the base model’s R2 of 0.61. We interpret
this to mean that the new model’s independent variables are more able to explain the variance in the model
than were the base model’s.
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Interpreting the coefficients

β1 has a smaller effect than in the base model. In the new model, a 1% increase in prbarr is associated with
a -1.634% change in the crime rate.

β2 also has a smaller effect Now, we associate a 1% increase in prbconv with a -0.577% change in the crime
rate.

β5 has a much smaller effect in the new model. A 1% increase in the number of police per capital is associated
with a 0.462% change in the crime rate.

β8 is interpreted as a unit change in density (again, thought to mean 100 people per square mile, though
this is unclear for the reasons stated above) being associated with a change in the crime rate of 11.909%.

β9 implies that western counties experience a parallel shift in the crime rate of -48.617% when compared
to eastern counties, the reference category.

β9 implies that central counties experience a parallel shift in the crime rate of -20.941% when compared to
the reference category.

The remainder of the coefficients are not statistically different than zero and, therefore, likely have little
effect.

Evaluating joint significance

Independent variables of questionable significance seem to be accumulating in the model. These variables are
not independently significant, but they may be jointly significant. The hypothesis that prbpris, lavgsen,
lincomeIneq, and pctymle are not jointly significant can be evaluated with an F-test.

linearHypothesis(fit_2,
c("lincomeIneq=0", "prbpris=0",

"lavgsen=0", "pctymle=0"),
white.adjust = "hc1") # Conduct a robust test

## Linear hypothesis test
##
## Hypothesis:
## lincomeIneq = 0
## prbpris = 0
## lavgsen = 0
## pctymle = 0
##
## Model 1: restricted model
## Model 2: lcrmrte ~ prbarr + prbconv + prbpris + lavgsen + lpolpc + lincomeIneq +
## pctymle + density + west + central
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 83
## 2 79 4 0.51 0.73

We fail to reject the null hypothesis that the variables under investigation are not jointly significant. In the
interest of parsimony, we remove these variables from the model and compare the results.
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fit_2a <- lm(formula = lcrmrte ~ prbarr + prbconv +
lpolpc + density + west + central,

data = crime)
fit_2ar2 <- summary(fit_2a)$r.squared
fit_2aCoeftest <- coeftest(fit_2a, vcov = vcovHC)
fit_2aCoeftest %>% coefTestTable()

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.260 0.591 0.441 0.661
prbarr -1.699 0.257 -6.606 0.000
prbconv -0.596 0.085 -6.968 0.000
lpolpc 0.457 0.086 5.303 0.000
density 0.118 0.023 5.171 0.000
west -0.482 0.079 -6.094 0.000
central -0.196 0.062 -3.154 0.002

The parsimonious model has a similar R2 value of 0.794 and nearly unchanged coefficients on the indepen-
dent variables.

Highlights of evaluation of the OLS assumptions

Examining the diagnostic plots for the parsimonious model reveals that the zero conditional mean assumption
appears to have been met. Slight deviations from zero mean exist for large fitted values, but those deviations
are small and are in an area of very sparse data. The scale-location plot seems to show a relatively constant
increase which may indicate heteroscedasticity. A Breusch-Pagan test (p = 0.177), however, suggests that we
cannot reject the null hypothesis of homoscedasticity. In any event, robust estimators address the possibility
of heteroscedasticity.

par(mfrow = c(2,2))
plot(fit_2, pch = 19, cex = 0.5)
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A Shapiro-Wilk test of the residuals suggests that we cannot reject the null hypothesis of normality, but the
results are borderline at p = 0.07. Fortunately we can rely on the large sample size and move forward.

Implications

The second model has a high value of R2 and confirms the direction, if not the magnitude, of the most
interesting findings in the base model. Since the OLS assumptions are met, the second model can be
confidently applied to policy decisions. The key variables that stand to impact the crime rate and that can
be affected through policy are the probability of arrest and the probability of conviction. The coefficients
on these variables suggest the value in providing police and prosecutors with the tools they need to effect
arrests and secure convictions.

3.3 A Larger Model

The final model will consist of the bulk of the remaining available explanatory variables. The intent of this
final modeling effort is to demonstrate the robustness of the results achieved in the preceding two models.

This model will add variables related to:

1. Income, in the form of the nine wage variables with the exception of wser due to the large outlier
noted in the EDA above.

2. Demographics in the form of data on the racial makeup of the counties reported in pctmin80.
3. The severity of crime reported in mix.
4. Relative affluence proxied by tax revenue and reported in taxpc.

26



Univariate analysis of the added explanatory variables

The histograms of the nine wage variables all show a positive skew. A logarithmic transformation makes
the variables more interpretable and mitigates the skew. This transformation is valid as wages exist on the
range (0,∞].

wcon_plot <- econHist('wcon', crime)
lwcon_plot <- econHist('lwcon', crime)
grid.arrange(wcon_plot, lwcon_plot,

ncol = 2)
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wtuc_plot <- econHist('wtuc', crime)
lwtuc_plot <- econHist('lwtuc', crime)
grid.arrange(wtuc_plot, lwtuc_plot,

ncol = 2)

0.000

0.002

0.004

0.006

200 300 400 500 600

de
ns

ity

Overlaid with a normal curve

Density of wtuc

0

1

2

5.5 6.0 6.5

de
ns

ity

Overlaid with a normal curve

Density of lwtuc

27



wtrd_plot <- econHist('wtrd', crime)
lwtrd_plot <- econHist('lwtrd', crime)
grid.arrange(wtrd_plot, lwtrd_plot,

ncol = 2)
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wfir_plot <- econHist('wfir', crime)
lwfir_plot <- econHist('lwfir', crime)
grid.arrange(wfir_plot, lwfir_plot,

ncol = 2)
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wmfg_plot <- econHist('wmfg', crime)
lwmfg_plot <- econHist('lwmfg', crime)
grid.arrange(wmfg_plot, lwmfg_plot,

ncol = 2)
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wfed_plot <- econHist('wfed', crime)
lwfed_plot <- econHist('lwfed', crime)
grid.arrange(wfed_plot, lwfed_plot,

ncol = 2)
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wsta_plot <- econHist('wsta', crime)
lwsta_plot <- econHist('lwsta', crime)
grid.arrange(wsta_plot, lwsta_plot,

ncol = 2)
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wloc_plot <- econHist('wloc', crime)
lwloc_plot <- econHist('lwloc', crime)
grid.arrange(wloc_plot, lwloc_plot,

ncol = 2)
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The variables polpc, mix, and taxpc are all skewed. All of these variables on on the range (0,∞) and
are, therefore, amenable to a natural logarithm transformation. Applying the transformation yields the
histograms that follow.

polpc_plot <- econHist('polpc', crime)
lpolpc_plot <- econHist('lpolpc', crime)
grid.arrange(polpc_plot, lpolpc_plot,

ncol = 2)
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mix_plot <- econHist('mix', crime)
lmix_plot <- econHist('lmix', crime)
grid.arrange(mix_plot, lmix_plot,

ncol = 2)
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taxpc_plot <- econHist('taxpc', crime)
ltaxpc_plot <- econHist('ltaxpc', crime)
grid.arrange(taxpc_plot, ltaxpc_plot,

ncol = 2)
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There is no evidence of top- or bottom-coding in the histograms above. The logarithmic transformations
largely mitigate the skew in all but the most extreme cases.

Multivariate analysis

A scatterplot matrix of all of the variables in the final model would be unwieldy. Rather, constructing scat-
terplot matrices showing the relationship between the new explanatory variables and the outcome variable,
lcrmrte, may be instructive.

crime_3_1 <- crime %>% select('lcrmrte', 'lwcon', 'lwtuc',
'lwtrd', 'lwfir', 'lwser',
'lwmfg')

pairs.panels(crime_3_1)
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We note the somewhat surprising correlations between the lcrmrte and wages associated with trades typ-
ically occupied by uneducated workers including construction, transportation, and manufacturing. Before
racing to a conclusion about these correlations, note that the following scatterplot matrix shows that the
strongest correlation between lcrmrte and a wage variable is with lwfed, the average wage of federal workers.

crime_3_2 <- crime %>% select('lcrmrte', 'lwfed', 'lwsta',
'lwloc', 'lmix', 'ltaxpc')

pairs.panels(crime_3_2)
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Fitting the model

We fit the model using OLS and compute robust standard errors.

fit_3 <- lm(formula = lcrmrte ~ prbarr + prbconv +
density + west + central + lwcon +
lwtuc + lwtrd + lwfir + lwmfg +
lwfed + lwsta + lwloc + lmix +
lpolpc + ltaxpc,

data = crime)
fit_3r2 <- summary(fit_3)$r.squared
fit_3Coeftest <- coeftest(fit_3, vcov = vcovHC)
fit_3Coeftest %>% coefTestTable()
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.673 4.411 -0.606 0.546
prbarr -1.752 0.391 -4.475 0.000
prbconv -0.618 0.133 -4.655 0.000
density 0.098 0.030 3.233 0.002
west -0.486 0.079 -6.119 0.000
central -0.251 0.073 -3.424 0.001
lwcon 0.157 0.250 0.627 0.532
lwtuc 0.076 0.286 0.265 0.792
lwtrd -0.005 0.443 -0.011 0.991
lwfir -0.229 0.336 -0.680 0.499
lwmfg 0.034 0.146 0.235 0.815
lwfed 0.686 0.420 1.634 0.106
lwsta -0.288 0.330 -0.871 0.387
lwloc 0.179 0.657 0.272 0.787
lmix 0.023 0.095 0.240 0.811
lpolpc 0.457 0.163 2.810 0.006
ltaxpc -0.176 0.223 -0.790 0.432

The final model produces an R2 of 0.831 which is a small improvement over the second model. More
importantly, those variables that were found significant in the previous model remain significant in this
model, and their coefficients remain largely unchanged. The results of the previous model are, therefore,
robust to the model specification.

Evaluating joint significance

None of the variables added to the previous model are statistically significant. An F-test reveals that the
added variables are marginally jointly significant.

linearHypothesis(fit_3,
c('lwcon=0', 'lwtuc=0', 'lwtrd=0',

'lwfir=0', 'lwmfg=0', 'lwfed=0',
'lwsta=0', 'lwloc=0', 'lmix=0',
'ltaxpc=0'), white.adjust = "hc1")

## Linear hypothesis test
##
## Hypothesis:
## lwcon = 0
## lwtuc = 0
## lwtrd = 0
## lwfir = 0
## lwmfg = 0
## lwfed = 0
## lwsta = 0
## lwloc = 0
## lmix = 0
## ltaxpc = 0
##
## Model 1: restricted model
## Model 2: lcrmrte ~ prbarr + prbconv + density + west + central + lwcon +
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## lwtuc + lwtrd + lwfir + lwmfg + lwfed + lwsta + lwloc + lmix +
## lpolpc + ltaxpc
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 83
## 2 73 10 1.94 0.053 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Highlights of evaluating the OLS assumptions
The diagnostic plots reveal no significant deviations from the OLS assumptions. The concern raised dur-
ing the construction of the base model regarding the effect of spatial autocorrelation on MLR.2 remains.
Heteroscedasticity is indicated in the scale-location plot and through a Breusch-Pagan test with p = 0.001.
Again, we address heteroscedasticity by using robust estimators. MLR.6 remains guaranteed by virtue of
the large sample size despite indications that the residuals are not normally distributed.

par(mfrow = c(2,2))
plot(fit_3, pch = 19, cex = 0.5)
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Implications
As stated above the primary purpose of this third model is to determine which variables of interest are robust
to changes in the model specification. The argument that the crime rate may be affected by putting policies
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in place supporting more aggressive policing and better investigations in support of successful prosecutions
is buttressed by these results.

3.4 A Thorough Evaluation of the OLS Assumptions for the Second Model

MLR.1 - Linear in parameters. This assumption is met simply by virtue of the model specification. Our
model is of the form ŷ = β̂0 + β̂1x1 + β̂2x2 + ...+ β̂jxj + û.

MLR.2 - Random sampling. We do not have the tools to assess whether this assumption is met. As
stated in the discussion of the base model, spatial autocorrelation may be an issue, but this is difficult to
assess without understanding the spatial arrangement of the counties under consideration.

MLR.3 - No perfect multicollinearity. R’s lm function would throw an error if any of the independent
variables were perfect linear combinations of one another. Since this has not occurred, we can safely say
that MLR.2 is met.

While there is no evidence that MLR.3 has been violated, there is value in assessing imperfect multicollinear-
ity. This is done by computing the variable inflation factor (VIF) of the variables in the model.

vif(fit_2a) %>%
kable(format = 'latex', booktabs = T) %>%
kable_styling()

x
prbarr 1.30
prbconv 1.09
lpolpc 1.32
density 1.64
west 1.21
central 1.34

While there is strictly no consensus on what value of VIF is cause for concern, most authors would agree
that the values returned for the model do not indicate a problem with the specification.

MLR.4 - Zero conditional mean. This assumption can be evaluated graphically. There is little evidence
in the residuals versus fitted plot below that the zero conditional mean assumption has been violated.
Excursions from zero are small, irregular, and most prominent in areas of sparse data.

plot(fit_2a, which = 1, pch = 19, cex = 0.5)
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MLR.5 - Homoscedasticity. This is addressed briefly above. The residuals versus fitted plot above shows
some indications of heteroscedasticity. Additional evidence to support this is provided by the scale-location
plot below. However, a Breusch-Pagan test returns p = 0.177. At this value, we fail to reject the null
hypothesis of homoscedasticity. To be conservative, however, we have consistently applied robust estimators
throughout this study.

plot(fit_2a, which = 3, pch = 19, cex = 0.5)
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MLR.6 - Normality. As has been described above, we suspect that this assumption is violated based on
the Q-Q plot below. As was reported above, the results of the Shapiro-Wilks test were marginal and were
strictly insufficient to reject the null hypothesis of normality. However, this is largely immaterial as the large
sample size allows reliance on OLS asymptotics.

plot(fit_2a, which = 2, pch = 19, cex = 0.5)

38



−2 −1 0 1 2

−
3

−
1

1

Theoretical Quantiles

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

lm(lcrmrte ~ prbarr + prbconv + lpolpc + density + west + central)

Normal Q−Q

24
50

82

3.5 Regression Table

The results of the three modeling efforts are summarized in the table below.

seFit1 <- sqrt(diag(vcovHC(fit_1)))
seFit2a <- sqrt(diag(vcovHC(fit_2a)))
seFit3 <- sqrt(diag(vcovHC(fit_3)))
stargazer(fit_1,

fit_2a,
fit_3,
single.row = TRUE,
omit.stat = "f",
se = list(seFit1, seFit2a, seFit3),
star.cutoffs = c(0.05, 0.01, 0.001),
type = 'latex')

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu
% Date and time: Thu, May 07, 2020 - 21:17:03

The practical significance of the results

The value of this study lies in its ability to guide jurisdictions toward actionable policies that have the
potential of reducing the crime rate. Consider a notional jurisdiction in the eastern portion of the state with
a population of 100,000. The jurisdiction experiences the state average crime rate of roughly 0.034 crimes
committed per person annually, or 3,400 crimes per year. The probability of arrest is the state average of
30%, or just over 1,000 arrests per year. Increasing the probability of arrest to 31% results in an associated
drop in the crime rate of 1.7% resulting in just under 60 fewer crimes per year. These are not trivial figures,
particularly for the potential victims who avoid criminal encounters.

Now consider that the jurisdiction convicts criminals at the state average of 55% or 561 convictions per year.
An increase in the conviction rate by 1% is associated with a half percent reduction in the crime rate. Half
of a percent, in this case, translates to 17 crimes avoided annually.
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Table 1:

Dependent variable:
lcrmrte

(1) (2) (3)
prbarr −2.360∗∗∗ (0.369) −1.700∗∗∗ (0.257) −1.750∗∗∗ (0.391)
prbconv −0.734∗∗∗ (0.102) −0.596∗∗∗ (0.085) −0.618∗∗∗ (0.133)
prbpris 0.306 (0.739)
lavgsen −0.063 (0.191)
lpolpc 0.626∗∗∗ (0.148) 0.457∗∗∗ (0.086) 0.457∗∗ (0.163)
lincomeIneq −0.042 (0.240)
ltaxpc −0.176 (0.223)
density 0.118∗∗∗ (0.023) 0.098∗∗ (0.030)
west −0.482∗∗∗ (0.079) −0.486∗∗∗ (0.079)
central −0.196∗∗ (0.062) −0.251∗∗∗ (0.073)
lwcon 0.157 (0.250)
lwtuc 0.076 (0.286)
lwtrd −0.005 (0.443)
lwfir −0.229 (0.336)
lwmfg 0.034 (0.146)
lwfed 0.686 (0.420)
lwsta −0.288 (0.330)
lwloc 0.179 (0.657)
lmix 0.023 (0.095)
Constant 1.850 (2.180) 0.260 (0.591) −2.670 (4.410)
Observations 90 90 90
R2 0.610 0.794 0.831
Adjusted R2 0.582 0.779 0.793
Residual Std. Error 0.355 (df = 83) 0.258 (df = 83) 0.249 (df = 73)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
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3.6 Omitted Variables

We focus our examination of omitted variables on the parsimonious model developed in section 3.2 and
evaluated more thoroughly in 3.4. We consider the following omitted variables:

1. Education. We assume that in increase in the level of education is associated with a decrease in the
crime rate. Further, we assume that a more educated population has a more sophisticated understand-
ing of the criminal justice system and is better equipped to evade law enforcement. Brought before a
more educated jury, however, the benefit of education to the criminal in the courtroom attenuates to
zero. We expect that the effect of education on the relative size of the police force will be minimal.
Assuming that education attracts people, we expect that an increase in the education level will be
associated with an increase in population density. Considering the impact of omitting education, we
arrive at the following conclusions about the changes in significance of the key explanatory variables.

Variable β α αβ Significance
education negative
prbarr negative negative positive decreases
prbconv negative - - -
lpolpc positive - - -
density positive positive negative decreases

2. Gang activity. Gang activity is anecdotally associated with an increase in the crime rate. Gangs
have a chilling effect on informants and witnesses that reduce the probabilities of arrest and conviction.
However, gangs are likely also associated with an increase in violent crimes that result in lengthy prison
sentences. Gang activity can certainly be expected to drive an increase in the relative size of the police
force. Anecdotal evidence suggests that gang activity may not be associated with a change in density.

Variable β α αβ Significance
gangs positive
prbarr negative negative negative increases
prbconv negative negative negative increases
lpolpc positive positive positive increases
density positive - - -

3. Trust in law enforcement. We assume that trust in law enforcement is associated with a decrease
in the crime rate. Communities that trust law enforcement are probably more likely to cooperate with
police and prosecutors, so the significance of the probability of arrest and conviction increase. We
expect that trust in the police would be associated with an increase in the size of the force per capita.

Variable β α αβ Significance
trust negative
prbarr negative positive negative increases
prbconv negative positive negative increases
lpolpc positive positive negative decreases
density positive - - -

4. Economic opportunity. We expect that an increase in economic opportunity will be associated with
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a decrease in the crime rate. Economic opportunity will likely shift the character of crime away from
violent activity into activity like white collar crime. These crimes may be challenging to investigate.
Economic opportunity should tend to increase population density, but we do not expect that it would
affect the relative size of the police force.

Variable β α αβ Significance
opportunity negative
prbarr negative negative positive decreases
prbconv negative negative positive decreases
lpolpc positive - - -
density positive positive negative decreases

5. Marijuana legalization. We consider the impact of omitting the degree to which marijuana is
legalized in the jurisdiction. States that have legalized report small increases in traffic-related crimes
and other offenses, but these are surely offset by the effect on the crime rate of decriminalization and
by reported substitution away from illicit hard drugs and toward marijuana. Arrests for marijuana
possession are common and, likely, are easy to make. So we expect that the probability of arrest will
decrease with marijuana legalization. Likewise, convictions for marijuana possession and distribution
are likely easy to obtain. Legalization will probably decrease the probability of conviction. We do not
expect immediate impacts on the size of the police force or the density of a jurisdiction stemming from
marijuana legalization.

Variable β α αβ Significance
legalization negative
prbarr negative negative positive decreases
prbconv negative negative positive decreases
lpolpc positive - - -
density positive - - -

4.0 Conclusion

Our analysis demonstrates that the effects of aggressive policing and prosecutions are robust and both
statistically and practically significant. The party can proceed confidently with developing policy prescrip-
tions around these variables to reduce the crime rate. However, we need to note that an analysis of this
sort, no matter how convincing, cannot capture the unique aspects of implementing policy in a political
environment. We also caution that dramatic changes to policies as a result of this analysis may lead to
significant unintended consequences. We have argued that increasing police aggressiveness may reduce the
crime rate. Consider New York’s stop and frisk policy as an extreme example. The outcome of the policy on
crime remains debatable, but the outcome on civil liberties and equity in New York are dramatic and well
documented. Proceed, then, with caution.
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