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Advances in natural language processing (NLP) and deep
learning techniques provide practitioners with an expanded
set of options for document classification. This paper lever-
ages recent research in this area, applying convolutional
neural networks and BERT variants against a challenging
real world dataset to evaluate how well these approaches
perform against traditional machine learning approaches.
We show that, for these data, state-of-the-art techniques can
enjoy real advantages over more traditional techniques, but
the effect is smaller than one might expect.

1 Introduction
This study considers the problem of identifying evidence
of gender-based discrimination in Fijian court records for
cases involving gender-based violence (GBV). The prob-
lem of GBV in Fiji is serious and well documented, with
64% of Fijian women reporting having experienced violence
by an intimate partner. The challenge of holding perpe-
trators accountable is sometimes confounded by an empha-
sis on the maintenance of the social order through blan-
ket acceptance of traditional practices—referred to as vakat-
uraga. Traditional practices that make finding justice for sur-
vivors of GBV challenging include the patriarchal ordering
of society—(matanitu)—and the practice of making atone-
ment between men—(bulubulu). Bulubulu involves making
an offer of items of some value as a means of securing for-
giveness and restoring of social harmony, but it is typically
carried out by men and does not address the need and right
of survivors to seek justice [10]. Our work deals with finding
evidence in texts generated by the Fijian judicial system that
cultural norms have manifested as discriminatory practices
in the courts.

The social benefits of detecting gender-based discrimination
in court documents are clear. Our natural language process-
ing interest in studying this problem stems from the nature
of the documents in question. The court documents we ex-
amine in this study are relatively few in number, are of of ar-
bitrary length, and are hand-coded by a small number of do-
main experts working for an international nongovernmental
organization. The small number of labeled documents (un-
der 1,000), the wide range of document lengths (over 10,000

words), and the nuanced nature in the language used between
discriminatory and non discriminatory documents, render the
problem of classifying instances of gender based discrimina-
tion decidedly non-trivial.

We approached this problem wanting to know if state-of-
the-art text classification methods offered substantially better
performance over more established shallow and deep learn-
ing methods. We explore the corpus in Section 2. In Section
3 we conduct baseline studies using a shallow classifier. In
Section 4 we train convolutional neural networks with two
different embedding schemes and apply them to the corpus.
In Section 5 we turn our attention to a variety of transformer
models. Section 6 deals with the problem of explainability.

2 The Corpus
Our data are provided by the International Center for Advo-
cates against Discrimination (ICAAD), a non-governmental
organization that conducts research and policy advocacy to
combat structural discrimination. The data consist of 13,384
court documents from the Republic of Fiji. The documents
cover a variety of matters. A subset of 809 documents in-
volving cases of gender-based violence (GBV) are manually
labeled with metadata indicating whether the document con-
tains evidence of gender-based discrimination and, if it did,
the form that the discrimination took. In general, appeals to
outmoded cultural practices and ideas around gender roles
that are used to justify a reduction in a perpetrator’s sentence
are labeled as instances of discrimination.

Applying an 80/10/10 split, we divide the corpus into a train-
ing set of 647 documents and test and validations sets of
81 documents each. Faced with a paucity of labeled docu-
ments, we weighed the benefits of removing the hold-out set
entirely to maximize data available during model training.
Since many of our methods use validation loss during train-
ing as a trigger to adjust the learning rate, we determined
that not presenting performance data on a hold out set would
unacceptably limit the strength of our conclusions.

The lengths of documents in the corpus varies substantially
as is shown in Table 1. Labels are applied to the entire docu-
ment rather than the sentence level, so determining where of-



Table 1: Characteristics of the corpus

Subset Documents Avg length 95% 99%

Complete 13,384 2,218 5,989 11,259

Train 647 1,526 4,005 7,619

Test 162 1,414 3,320 7,203

Table 2: Prevalence of discrimination factors

Factor Training Validation

Customary practices 0.25 0.25

Gender stereotypes 0.38 0.32

Other factors 0.28 0.31

Overall positive 0.58 0.59

fending text lies in the positively-labeled documents requires
some degree of analysis.

The 809 documents related to GBV in the corpus contain
labels for three sub-classes of gender discrimination. The
customary practices label identifies instances in which meth-
ods of informal arbitration or restitution are improperly taken
into account by the court. The gender stereotypes label in-
dicates that the court has placed undue weight on perceived
aspects of the victim’s gender in forming its decision. The
third label is the catch-all other factors. The prevalence of
each factor in the training and validation sets are shown in
Table 2. Note that documents can be assigned more than one
label.

The corpus also contains a variety of document types. These
include decisions, rulings, sentencing documents, and judge-
ments. Each document type serves a different purpose, and
some are specific to different parts of the judiciary. Sen-
tences, for instance, are specific to trial courts while judge-
ments are issued by appellate courts. The document types
exhibit different general structures and lengths. The length
of the documents in the training set disaggregated by docu-
ment type are presented in Figure 1.

3 Baseline Study - NBSVM
To establish a performance baseline for binary classifica-
tion, we examined classification performance using the naive
Bayes support vector machine (NBSVM) classifier imple-
mented in the ktrain library [14]. The NBSVM model [12]
seeks to balance the performance of multinomial naive Bayes
and support vector machines for text classification. The for-
mer are better suited for smaller sections of text while the lat-
ter perform better with longer sequences. The model gener-
ates embeddings from naive Bayes log-count ratios and uses

Fig. 1: Distribution of document lengths disaggregated by docu-
ment type

Table 3: NBSVM average performance over four experiments

Acc. Precision Recall F1

0.70 0.90 0.66 0.77

these as input to a support vector machine model. The em-
beddings are fixed during training.

The NBSVM performed best with a maximum input length
of 8,000 tokens. We conducted training using ktrain’s
autotrain function with a maximum learning rate of
10−4. The autotrain function automatically decreases
the learning rate when it encounters a plateau in the valida-
tion loss. Model performance was consistent for consecutive
runs and is summarized in Table 3.

Wang and Manning found that model performance increased
when they trained with bigrams. We did not find this to be the
case for our corpus. We ran related studies with a Fasttext-
like model and a logistic regression model with trainable em-
beddings. Both models performed slightly worse than the
NBSVM model.

4 Convolutional Neural Networks (CNNs)
Kim demonstrated that relatively simple CNNs can achieve
excellent results for sentence classification tasks [15]. We
explored the performance of CNNs on the task of classifying
gender discrimination in our corpus using two models simi-
lar to Kim’s. The baseline architecture is shown in Figure 2.
The unusual use of a two-element softmax classification head
for a binary classification problem allows us to use the ktrain
package and does not materially affect the model’s results.
The model accepts 5,000 input word tokens per document,
enough to ingest over 95% of the documents in the corpus
in their entirety. Thirty-two filters each are learned for ker-
nel sizes ranging from two to six. The maximum activations



of each filter—160 in all—are then concatenated and passed
through a 64-neuron dense layer.

Fig. 2: Baseline CNN architecture showing a 100-dimensional em-
bedding layer for the case of trainable embeddings

4.1 CNN with trainable embeddings
We implemented the model shown in Figure 2 which in-
cludes a randomly initialized 100-dimension word embed-
ding layer at the bottom of the model. Overfitting is a sig-
nificant challenge, likely owing to the relatively small size
of the data set which allowed the model easily to learn fea-
tures unique to individual documents in the training set. We
managed overfitting by applying dropout regularization with
a probability of 0.4 to the final dense hidden layer. We also
applied an implementation of the the triangular learning rate
policy proposed by Smith [11] with a maximum learning rate
of 10−3. The training routine decreased the learning rate in
response to plateaus experienced in the validation loss and
applied early stopping when the model was no longer able to
produce improvements in validation loss.

Training took roughly 64 second per iteration using an
NVIDIA P6000 GPU. Average model performance was not
as good as NBSVM as detailed in Table 5.

The model encoded only a handful of meaningful seman-
tic relationships in the learned embeddings. For instance,
bread is closest to breadwinner in terms of cosine similar-
ity. The terms breadwinner and bread winner are used in-
terchangeably in several court documents, in the context of
the traditional head of a Fijian household. The majority of
words in the vocabulary that we explored, however, did not
have meaningful associations encoded in their embeddings
except tangentially (daughter was most closely associated
with care, for instance).

Noting that that models we built all had similar perfor-
mance but tended to vary in individual predictions, we built
a 10-learner bagged ensemble of CNNs [16]. The ensemble
model’s performance was substantially worse than that of the
single model reported in Table 5.

Table 4: Three closest neighbors using loya2Vec embeddings for a
sample of words in the vocabulary

Input 1 2 3

breadwinner winner bread ilisavani

victim complainant victim’s girl

suva labasa lautoka nausori

sydney brisbane melbourne perth

Table 5: Average performance of CNN models across five experi-
ments

Embeddings Acc. Precision Recall F1

Trainable 0.64 0.65 0.85 0.73

loya2Vec 0.63 0.67 0.77 0.71

4.2 CNN with domain-specific embeddings
We used the full corpus of Fijian legal texts to build custom
Word2Vec-style embeddings using the skip gram model pro-
vided by the gensim package. The resulting loya2Vec (loya
being Fijian for lawyer) embeddings cover a vocabulary of
nearly 33,000 words. While the texts used to construct the
embeddings include those in our training set, we purpose-
fully excluded the texts contained in our validation and test
sets from the embedding construction process.

As one might expect, semantic relationships are better cap-
tured in loya2Vec then they are in the embeddings learned in
the previous section. An sample of learned relationships is
provided in Table 4.

Starting from the previous CNN architecture, we built the
loya2Vec mapping into a new embedding layer. As in
the case of the CNN with trainable embeddings, the fixed-
embedding model uses 32 filters each for kernel sizes two
through six. The model’s head consists of a 64-neuron dense
layer to which a dropout probability of 0.4 is applied. We
were surprised to find that the loya2Vec-based CNN’s perfor-
mance was not as good as was the model with a smaller train-
able embedding layer as shown in Table 5. We strongly sus-
pect that this inversion of expected results is a consequence
of the key characteristics of our data set—its small overall
size and wide range of document lengths.

5 Transformers
Bidirectional Encoder from Transformers [1] represents re-
cent development in deep learning techniques for NLP tasks.
BERT has been trained on vast amounts of text and as such
the BERT pre-trained language model can be used for clas-
sification tasks by simply applying a single additional linear
layer to support the task. For the classification task the hid-



den state of the first token [CLS] is used as a representation
of the entire sequence (document).

BERT is designed to run against relatively small sequences
of text, with a maximum length of 512 word pieces. Typi-
cally sentences or documents longer than this are truncated,
potentially losing valuable signal information. Given the
long form length of documents in the corpus, we implement
a number of strategies designed to overcome the token limit.

For all experiments, we used the combined label for gen-
der discrimination, and we used all document types. Sub-
dividing the models or corpus with either of these factors
returned lower accuracy and F1 scores than a combined ap-
proach.

The Huggingface library provides pre-trained BERT models
as well as variants of BERT such as DistilBert and Long-
former which are used in these experiments.

Firstly, we replicate two of the methods described by Sun et
al [6], specifically truncation methods and hierarchical meth-
ods. For the truncation approach input documents are trun-
cated to provide smaller inputs, either by taking the first 512
or last 512 tokens. In this architecture the weights of the
[CLS] token are jointly trained alongside the the parameter
matrix for classification, maximizing the log probability for
the correct label.

Fig. 3: DistilBert Truncate Model

The hierarchical approach divides each document in k = L/n
segments where n represents a specified maximum token
length. At this point each document has been exploded to
∑ length(d)/n chunks. Each resulting chunk may or may not
contain signal to support its classification, therefore poten-
tially confusing the model. Two approaches to this concern
are (a) to ignore it and assign the existing label to each chunk
regardless, and (b) to freeze the embeddings for each chunk
and aggregate the results across chunks for each document
in a separate model. We tried both approaches but the latter
was more effective, using an additional simple architecture
of one 1000 neuron tanh hidden layer and one dropout layer
at 0.2. We used a learning rate of 2e−5, 10 epochs and batch
size of 8. Documents were split into 200 token chunks with

50 word overlaps prior to tokenization.

Secondly we implement the method described by Pappagari
et al [5], this takes a similar approach to the hierarchical
method, however instead of pooling, the segment embedding
outputs are stacked into a sequence which serves as input into
a small (100 dimensional) LSTM layer. This is fed into two
fully connected layers, a 30 dimensional RELU and then a
softmax for the final classes. Embeddings are frozen prior to
applying the LSTM.

The third and final approach is an implementation of Long-
former, as described by Beltagy et al [4]. Longformer has
been trained on larger documents and can work with a word
piece count of up to 4096. Longformer is not described
in detail here, but in summary, it reduces the complexity
of the self-attention component by sparsifying the full self-
attention matrix according to an attention pattern, this is ap-
plied on a fixed sliding window. To improve task specific
results, global attention is applied to specific input locations,
in the case of classification this is the [CLS] token.

5.1 Truncation, Hierarchical and Recurrent Methods
We used DistilBERT and BERT pre-trained models to pro-
vide embeddings with a linear layer added for classification.
Sanh et al [3] provide a methodology, DistilBERT, that per-
forms nearly as well as BERT but with lower computational
cost. The DistilBERT architecture is identical to BERT’s
but differs by removing the token-type embeddings and the
pooler, which are not needed for our classification task, and
by reducing the number of layers from twelve to six. We
conducted experiments with a batch size of eight—to con-
serve memory—over 3 epochs using the Adam optimizer
and a learning rate of 2e−5. This learning rate generally per-
formed the best across BERT models. Training data was split
90/10 for training and validation. Models are fine tuned on
top of the pretrained distilbert-uncased model with
one additional linear layer on top of the [CLS] output em-
bedding for classification.

Truncation methods on BERT were quite effective; using
the last 512 tokens provided better results than using the
head 512 tokens. This is not surprising as manual analysis
of the text in which a judge evaluates mitigating factors—
factors which frequently contain evidence of gender-based
discrimination—generally appear toward the end of sentenc-
ing documents and judgements. The documents in the cor-
pus have already been pre-processed to remove non-useful
header and tail information, so truncating the documents has
a significant impact on signal processing. Results returned
from using the head and tail tokens are provided in Table 6.
Averaged over five experiments, the tail approach gives an
accuracy of 0.74 and an F1 of 0.74.

For the hierarchical models, mean and max pooling per-
formed equivalently and worse than a simpler tail truncation
approach.

Documents were split into 200 token chunks with 50 word
overlaps prior to tokenization.



Table 6: Results of applying truncation; three experiments each
were conducted using head and tail tokens with batch size = 8,
epochs = 3, and learning rate = 2−5

Method Acc. Precision Recall F1

Head 0.64 0.69 0.64 0.62

Tail 0.74 0.75 0.74 0.74

Table 7: Results of applying hierarchical approach. 5 runs of each
set of experiments with finalized parameters of batch size=8 (1 for
LSTM), epochs=5 (10 for aggregation, LSTM), learning rate of
2e−5 (1e−5 for LSTM)

Method Acc. Precision Recall F1

Mean 0.68 0.69 0.68 0.67

Max 0.71 0.72 0.71 0.70

LSTM 0.68 0.72 0.68 0.67

Table 8: Best Longformer result: batch size = 8, epochs = 3, and
learning rate = 2−5

Method Acc. Precision Recall F1

Longformer 0.71 0.72 0.84 0.78

5.2 Longformer Method
The Longformer approach differs from the previous archi-
tectures in that it uses RoBERTa for tokenization and an
alternative attention method. For pretraining, the weights
from RoBERTa [2] checkpoint are used, adding minimal
changes required for attention (Beltagy et al. 2020). We uti-
lize Longformer base consisting of 12 hidden layers and the
Huggingface LongformerForSequenceClassification library
which adds a Linear layer for classification.

Longformer was fine-tuned on two separate systems, one
with a single NVIDIA K80 GPU and one with a single
NVIDIA P100. Memory limitations prevented us from uti-
lizing the full 4096 token segment length, even with 1024
tokens, the K80 was only able operate with a batch size of
1 (i.e. Stochastic gradient descent) whereas the P100 could
operate a batch size up to 4. Multiple experiments were con-
ducted with various learning rates, batch sizes and epochs.
In all experiments a larger batch size was preferable over a
larger segment length, and 3 epochs performed adequately.
All Longformer methods were promising providing better re-
sults than the DistilBERT truncation and hierarchical meth-
ods. The best result is show in Table 8 and more complete
results are provided in Table 9.

For each experiment, the data was divided into 562 train-
ing samples, 65 validation samples and 162 test (holdout)

samples. All experiments run with dropout 0.2 and attention
dropout 0.2

Interestingly increasing batch size and token length has a
slight improvement on F1 and recall but at the cost of pre-
cision. Considering the BERT variant models generally pre-
fer to predict all positive results (higher recall) we need to
be careful in evaluation. The practical implication of a false
positive outweigh a false negative when classifying a court
document as tainted by gender-based discrimination.

With more powerful compute it would be interesting to see
if these results can be improved upon with the recommended
batch size (16 or 32) and by utilizing more of the document
text.

6 Considering explainability
While not a formal accusation of judicial misconduct, la-
beling a court document as containing evidence of bias cer-
tainly carries some weight. Before applying a model to the
task of potentially impugning the character of a sitting judge,
we should provide a qualitative assessment of our predic-
tions. The LIME algorithm [13] provides a method for doing
this via automated perturbation analysis. In the case of text,
LIME computes the sensitivity of a prediction to the input
text by iteratively removing a single word from the input text
and repeating the prediction.

As an illustrative example, we consider the sentence As the
accused is the sole breadwinner for his family, I reduce his
sentence by two years. Taken by itself, and applying our
understanding of ICAAD’s concerns about Fijian jurispru-
dence, we expect that this sentence would be classified as
containing evidence of gender based discrimination due to
its appeal to the accused’s patriarchal role in his family. Re-
sults are presented in Fig 4.

Fig. 4: Application of the LIME algorithm to predictions generated
by a variety of models

Green text in Figure 4 indicates words that support the clas-
sifer’s prediction. The deeper the green, the stronger the
impact of the highlighted word on the classification. Red



Table 9: Longformer experiments with averaged results

Max Len Epochs Batch Size LR Experiments Acc. Precision Recall F1

512 5 8 2e-5 5 0.70 0.71 0.81 0.76

512 3 8 2e-5 1 0.69 0.71 0.81 0.76

512 5 8 4e-5 4 0.69 0.70 0.81 0.75

512 3 8 2e-5 2 0.71 0.72 0.84 0.78

512 3 12 2e-5 1 0.76 0.67 0.89 0.77

1024 3 6 2e-5 1 0.69 0.69 0.87 0.77

text similarly indicates words that did not support the predic-
tion. We see interesting differences in how the models treat
the text. The NBSVM produces the most reasonable out-
put with the argument of the accused’s position in his fam-
ily and the resulting reduction in sentence identified. The
loya2Vec CNN gets the prediction wrong, but does identify
the phrase reduce his sentence as supporting a positive clas-
sification. The CNN with trainable embeddings returns the
correct class and identifies most of the loaded text. The Dis-
tilBERT results are interesting and may be influenced by the
model’s word piece tokenization.

7 Conclusions and next steps
We attacked the problem of detecting gender discrimination
in Fijian court documents with an array of methods, none of
which returned the sort of results we had hoped to achieve,
though the Longformer showed great promise. Our con-
solidated results are presented in Table 10 for comparison.
No one measure of performance is sufficient to determine
which classifier is the best. If the classifier is going to be
implemented in an automated system without much human
review, accuracy and precision (to guard against false posi-
tives) should be carefully considered. If the classifier is going
to find itself in a system that triggers review by domain ex-
perts, accuracy and recall (to guard against false negatives)
should be prioritized.

Our results suggest the following conclusions and associated
next steps:

1. The Longformer shows great promise, but our implemen-
tation was hampered by computational limitations. Applying
more compute to the problem should allow the Longformer
model to ingest longer sections of text and return better re-
sults.

2. The challenges we experienced with managing overfitting
suggests that our corpus is too small. Additional document-
level labeling by domain experts will likely improve model
performance for subsequent efforts.

3. Heterogeneity in document length and structure makes
this data set particularly challenging. We tried several efforts
to overcome this by steering our classifiers at the areas of the

documents most likely to contain signal. It may be insuffi-
cient to apply labels to long documents. Subsequent efforts
should include tagging—by domain experts—of sentences
that contained evidence of gender-based discrimination.

4. There is still a place for simpler models. Shallow models
may outperform state-of-the-art methods when it comes to
classifying documents that vary substantially in length and
structure. In particular, NBSVM produced results largely in
line with more sohisticated methods.
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